Q. 2 a. Enlist the various advantages of IC over discrete component circuits.

Answer: 1.2 of Text Book I
b. Draw basic differential amplifier and discuss transfer characteristics of an ideal operational amplifier.

Answer: 2.4.1 \& 2.4.2 of Text Book I

c. Design an amplifier with a gain of +5 using one OP-AMP

Answer: Page Number 49 of Text Book I

Q. 3 a. State non-ideal DC characteristics of an op-amp. Explain any two of them in detail.

Answer: 3.2 of Text Book I

b. (i) Define Slew Rate of an op-amp
(ii) What causes the Slew Rate
(iii) How Slew Rate is measured
(iv) Can IC 741C be used for high frequency application?

Answer: 3.3.4 of Text Book I

Q. 4 a. Draw the characteristics of an ideal comparator and that of a commercially available comparator. Also list different types of comparators.
Answer: Page Number 207 of Text Book
Q. 5 a. Describe the operation of an Astable multivibrator using 555 timer.

Answer: 5.4 of Text Book I

b. Calculate the values of LSB, MSB and full scale output for an 8-bit DAC for the 0 to 10 V range.

Answer:

c. What is a voltage regulator? State only name of the circuits that are used to make a regulated power supply.

Answer:

Q. 6
a. Differentiate between positive logic and negative logic.
b. Perform the following conversions:
(i) $(110011011001)_{2}=($ \qquad $)_{10}$
(ii) $(268)_{10}=\left(_\quad\right)_{16}$
(iii) $(39.12)_{10}=(\underline{Z})_{2}$
(iv) $(1054)_{8}=\left(_\right)_{10}$
(v) $(2040.125)_{10}=\left(_\right)_{16}$
(vi) $(1001101.1011)_{2}=(\ldots)_{8}$

Answer:

ciii) $(39.12)_{10}=(\square)_{2}$

$$
\begin{array}{ll}
0.12 \times 2=0.24 & 0^{\text {Mst }} \\
0.24 \times 2=0.48 & 0 \\
0.48 \times 2=0.96 & 0 \\
0.96 \times 2=1.92 & 1 \\
0.92 \times 2=1.84= & 1
\end{array}
$$

$$
(100101 \text { 1.00011...) }
$$

(iv) $(1054)_{8}=(\longleftarrow)_{10}$
${ }_{8} 88^{10} 58^{4}=(556)_{10}$.
(V) $(2040.125)_{10}=(7 \text { F8.2 })_{16}$

16	Ra40		Raner
16	127	8	8
16	7	15	(F)

(vi) $(1001101.1011)_{2}=()_{8}$

$$
\begin{array}{ccccc}
001001 & 101 & 101 & 100 \\
\downarrow & t & 4 & 1 & 4 \\
1 & 1 & 5 & 5 & 4
\end{array}=(115.54) \%
$$

Q. 7 a. Why NAND and NOR gates are called universal gates?

Answer: 3.12 of Text Book II
b. Prove that the given identity $\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}$ represents a NOR logic.
c. (i) Draw the logic circuit for the given identity $Y=A B C+\overline{A B C}+B$
(ii) Simplify the expression and draw a logic circuit for the same.

Answer:

$$
\text { (c) } y=A B C+\overline{A B C}+B
$$

(1) Lesic cirant

(ii) simplification.

$$
\begin{aligned}
Y & =A B C+\overline{A B C}+B \\
& =1+B \\
& =1
\end{aligned}
$$

Q. 8 a. What is Priority encoder? Draw \& explain the truth table of decimal to BCD priority encoder.
Answer: Page Number 593 of Text Book
b. Design a Full Adder Circuit consisting of three inputs A, B, C_{IN} and two outputs S, C ${ }_{\text {OUT }}$.
Answer: Page Number 320 of Text Book
Q. 9 a. Write short notes on:-
(i) NAND gate latch
(ii) Clocked D FF

Answer: 9.8 \& 5.4 of Text Book

Text Books

1. Linear Integrated Circuits, Revised Second Edition, D Roy Choudhury, Shail B. Jain, New Age International Publishers.
2. Digital Systems - Principles and Applications, Ninth Edition, Ronald J Tocci, Neal S Widmer and Gregory L. Moss, Pearson Education, 2008.
